
*****

* Corresponding author. Tel.: (212)5-642389; fax: (212)5-642500;
e-mail: makoudi@fesnet.net.ma.

q This papeer was not presented at any IFAC meeting. This paper
was recommended for publication in revised form by Associate Editor
G. Dumont under the direction of Editor C.C. Hang.

Automatica 35 (1999) 1417}1426

Brief Paper

Robust decentralized adaptive control for non-minimum phase
systems with unknown and/or time varying delayq

M. Makoudi*, L. Radouane
LESSI FaculteH des Sciences, DeH partement de Physique, B.P. 1796, Atlas, 30000, Morocco

Received 28 July 1997; revised 15 October 1998; received in "nal form 8 February 1999

Abstract

This paper presents a decentralized model reference adaptive control (DMRAC) for interconnected subsystems with unknown
and/or time-varying time delay. The decentralization approach is based on the interconnection output estimation using the
polynomial series which o!ers a general solution for interconnected subsystems. The parameter estimation scheme is a combined
adaptive data "ltering with a recursive least-squares algorithm with parameter projection and signal normalization. A &&good data''
model is de"ned by an adaptive "ltering of the input and output signals. The obtained model permits to deal with non-minimum
phased subsystems with unknown or time-varying dead time and at the same time to relax the hypothesis of weak interconnections for
decentralized control. The performance of the studied scheme is illustrated by numerical examples. ( 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

In the control of large-scale systems, one usually faces
poor knowledge on the plant parameters and intercon-
nections between subsystems. Thus the adaptive control
technique in this case is an appropriate strategy to be
employed. Moreover, if some subsystems distribute dis-
tantly, it is di$cult for a centralized controller to gather
feedback signals from the subsystems. Also, the design
and implementation of the centralized controller may be
complicated. An e!ective way to handle this di$culty is
to apply decentralized control strategies, whereby each
subsystem is controlled independently on the basis of its
own performance criterion and locally available informa-
tion. The majority of the results on decentralized control
of large-scale systems described in input/output form
refer to systems that consist of weakly coupled subsys-
tems (Wen and Hill, 1992; Datta and Ioannou, 1991;

Hejda et al., 1990; Ioannou, 1986; Ossman, 1989; Praly
and Trulsson, 1986; Reed and Ioannou, 1988). The sub-
systems may be considered in isolation, and the local
controllers received for the isolated subsystems may be
applied as decentralized controllers to the overall system.
However, the information which may be extracted from
the interconnections are generally ignored and con-
sidered as perturbations (Ossman, 1989; Praly and
Trulsson, 1986). No attempt has been made to estimate
them in order to improve the control performance and
robustness.

In this paper, we present a decentralized model refer-
ence adaptive control (DMRAC) for interconnected sub-
systems. The main idea is to predict the interconnection
outputs acting on each subsystem to relax the hypothesis
of weak interconnections. These predictions are used for
the synthesis of the local control. The prediction method
is based on expressing the interconnection outputs as
a linear combination of a set of orthogonal known func-
tions of a basis. Note that the polynomial approach has
received much attention in mathematical modelling,
identi"cation and control literature (Heuberger et al.,
1995; Lee and Tsay, 1986; Niedzwecki, 1988; Greblicki,
1994; James, 1994; Wei, 1990; Zervos et al., 1985, 1988;
Zervos and Dumont, 1988). The parameter estimation
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scheme is a combined adaptive data "ltering with a re-
cursive least-squares algorithm with parameter projec-
tion and signal normalization. The problem of minimum
phase is handled by adjusting the data "ltering parameter
at each instant. Then all the subsystem zeros are relo-
cated inside the unit circle. It is demonstrated that the
input/output data "ltering permits also to solve the di$-
cult problem of model reference adaptive control in the
presence of unknown time-delay variations, where only
the upper limit on the time delay must be known. Then,
relaxed constraints on the interconnections are necessary
to ensure the global system boundedness. The scheme
robustness with respect to unmodelled dynamics is also
simultaneously improved. The paper is organized as fol-
lows: In Section 2, we present the system description.
A robust DMRAC for non-minimum phase subsystems
with varying time delay is presented in Section 3. In
Section 4, the robustness of the DMRAC is established
without a priori information about the exact invariant
time delay. Numerical examples are "nally given for
illustration.

2. Problem statement

The system to be considered consists of N intercon-
nected single-input}single-output (SISO) subsystems
described in input/output form by
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The time-delay index di (di51), is unknown and/or time
varying. m

i
(t) represents the unmodelled response of

subsystem i.
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In this paper, the objective is to derive a decentralized
control law to stabilize the global system with no in-
formation exchange among the subsystems. It is assumed
that for subsystem i, the output <

i
(t) is not available.

Thus, we propose that each subsystem predicts its inter-
connection outputs in real time. The prediction method
is based on expressing the interconnection outputs as
a linear combination of a set of known functions of
a basis.

2.1. Functional series modelling

Let ¹"M1, 2,2, aN and let S(t)"Ms
1
(t),2, s

m
(t)NT be

the set of linearly bounded independent sequences (func-
tions of discrete-time t) on ¹. The elements of S will
be further referred to basis functions. Possible sets of
functions that could be used include powers of time
s
j
(t)"tj~1, j"1,2, m (which will be referred to as the

Legendre basis) or cosine functions

S(t)"G
cos n( j!1)t if j is odd

sin n( j!1)t if j is even.

(which is called the Fourier basis).

Now, we will use the functional modelling of the inter-
connections. We assume that for subsystem i, the un-
known output <

i
(t) may be expanded into a series as
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(t) is the residual between the output <

i
(t) and the

series which may be unbounded. M
i
(t) is a time-varying

vector of unknown elements to be estimated. The vector
M

i
(t) is taken to be time varying, to represent more

precisely the interaction term <
i
(t). This modelization is

more adequate than <
i
(t)"MT

i
S(t)#=

i
(t) where M

i
is

a constant vector (see the Appendix).
By substitution of Eq. (6) into (1), we obtain
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Further assumptions concerning the plant are made:

A1: An upper bound ni* on the orders ni, mi and rij,
i, j"1, 2,2, N is known.

A2: There exists a known scalar o
i
3R` such that
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i
.
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A3: There exists a "nite positive scalar k
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In this paper, we plan to design a decentralized adaptive
control which should stabilize the global system and
cause >

i
(t) to track a bounded reference model >

im
(t).

A major drawback with model reference adaptive control
methods is that they require a priori knowledge of the
dead time of the process transfer function which must
be minimum phased. In many industrial processes, the
time-delay di is either unknown accurately or even time
varying.

3. DMRAC in presence of varying time delay

If the time-delay di is time-varying i.e. dimin4di(t)4
dimax where dimin51 and only dimax is known, the
normal approach in literature (Dumont, 1982; Vodel and
Edgar, 1980) is to model subsystem (7) by
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Compared to model (7), this corresponds to an extension
of the B-polynomial with (dimax-1) extra parameters.

3.1. Adaptive **good data++ model

The key issue to get a robust parameter estimation
may be viewed as a &&good data'' model and a robust
parameter adaptation algorithm with respect to bounded
disturbances and time-varying parameters. Let the %

i
lin-

ear operator be de"ned as (Makoudi and Radouane,
1995, 1997)
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The plant "ltered model (14) may be expressed in
regression form as follows:
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Remarks. (1) The plant "ltered model (14) hence in-
volves the main design features. The input}output signals
are "ltered by %

i
(O

i
/P

i
). The "lter (O

i
/P

i
), which should

be low-pass, is used to reduce the high-frequency modes
of the unmodelled dynamics. The new &&good data''model
involves in spite of the low-pass "ltering, an exponential
adaptive "ltering (%

i
). The %

i
operator allows to remove

the minimum phase assumption while improving the
robustness of the DMRAC (Lemma 3). This is equivalent
to generating a minimum phase estimated model for each
subsystem. Note that when a

i
(t)"1 the proposed "lter

reduces to the classical one O
i
/P

i
considered in Giri et al.

(1991) and Sripada and Fisher (1987).
(2) Note that in the previous works dealing with small

interconnections (see, for example, Wen and Hill, 1992;
Datta and Ioannou, 1991; Hejda et al., 1990; Praly and
Trulsson, 1986), the classical assumption made for Eq. (5)
is D<
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i
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available information. k
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small for stability purpose. In our work, only the residual
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(t) (Eq. (8)) is constrained to satisfy assumption

A3. This is due to the introduction of the term (S(t)) in the
observation vector and of the vector M

i
(t) in the para-

meter vector (Eq. (11)). The interconnections are thus
taken into account by each subsystem. Then the nor-
malizing signal Z

i
(t) depends on local subsystem signals

and implicitly on the interconnection signals also. There-
fore, this new assumption makes the present work
di!erent from the previous ones on the same subject.
Assumption A3 is no more restrictive.
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¹hus, the ,lter %
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) permits to reduce the e+ects of the

unmodeled dynamics.

Proof. Consider the "ltered subsystem model de"ned by:
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3.2. Robust parameter adaptation algorithm
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Some useful properties of estimator (16), (17) are now
given in Lemma 2.

Lemma 2. Consider the system model given in (8), subject
to assumptions A1}A3, then the algorithm (16)} (17) has
the following properties:
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The proof of Lemma 2 may be carried out along the same
lines as in (Giri et al., 1991) and is then omitted.
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(see Zinober, 1983), where ni*#dimax is the order of
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3.3. Decentralized adaptive control
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The indirect adaptive control algorithm above is globally
convergent, as shown below.

Theorem 1. Consider the decentralized adaptive control
system consisting of the plant (8), subject to assumptions
A1}A3 in closed-loop with the adaptive control law (20).
¹hen, the resulting closed-loop system is globally stable in
the sense that:

(i) ;
i
(t), >

i
(t) are bounded for all time,

(ii) if k
i
is equal to zero, then lim(>

i
(t)!>

im
(t))"0 as

tPR

Proof. We de"ne AK .BK and AK BK

AK .BK "+
i

+
j

aL
i
(t)bK

j
(t!i)q~i~jOBK . AK , (28)

AK BK "+
i

+
j

aL
i
(t)bK

j
(t)q~i~j"BK AK . (29)

We also de"ne

BM "BK (t!1, q~1). (30)

From (17), we have

e
i&
(t#1)"AK

ia>i&(t#1)!BK @
ia;i&

(t)!MK T
i
(t)S

&
(t#1), (31)

e
i&
(t#1)"¹>

i&
(t#1)!GK

i
>
i&
(t)!BM @

ia;i&
(t)

!MK T
i
(t)S

&
(t#1)#[AK

ia!AM
ia]>i&(t#1)

![BK @
ia!BM @

ia];i&
(t) (32)

or

¹>
i&
(t#1)#[AK

ia!AM
ia]>i&(t#1)![BK @

ia!BM @
ia];i&

(t)

"e
i&
(t#1)#¹

i
>

im&
(t#1). (33)

Operating on (33) by AK
ia gives

¹AK
ia>i&(t#1)#AK

ia.[AK ia!AM
ia]>i&(t#1)

!AK
ia . [BK @ia!BM @

ia];i&
(t)"AK

iaei&(t#1)#¹
i
AK

ia>im&
(t#1).

(34)
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Using (31) in (34), then (33) and (34) can be summarized as

C
¹

i
#[AK

ia!AM
ia] ![BK @

ia!BM @
ia]

AK
ia . [AK ia!AM

ia]#[AK
ia .¹

i
!AM

ia¹i
] ¹

i
BK @
ia!AK

ia . [BK @ia!BM @
ia]!¹

i
[BK @

ia!BM @
ia]D

C
>

if
(t#1)
;

if
(t) D"C

¹
i

¹
i
AK

iaD>im&
(t#1)#C

1
AK

ia!¹
i
Dei&(t#1)#C

0
!¹

i
MK T

i
DS

&
(t#1). (35)

Eq. (35) can be regarded as a linear time varying system
having inputs Me

i&
(t#1)N and M>

im&
(t#1)N and outputs

M;
i&
(t)N and M>

i&
(t)N. The terms in square brackets, for

example, [AK
ia!AM

ia], and so on, arise due to the time-
varying nature of the parameter estimates and a

i
(t). Since

>
im&

(t), S
&
(t) are bounded and following part (iii) of

Lemma 2, we can conclude that model (35) is asymp-
totically time invariant and stable provided that ¹

i
and

BK @
ia are both stable. Thus, from (35), M;

i&
(t)Nand M>

i&
(t)N

are asymptotically bounded by Me
i&
(t)N. If k

i
is equal to

zero, Me
i&
(t)N converges to zero and >

i&
(t) converges to

>
im&

(t). Then>
i
(t) converges to>

im
(t). This establishes the

theorem.

4. DMRAC in presence of unknown time delay

In this section, we consider the non-minimum phase
subsystem described by

A
i
(q~1)>

i
(t)"B

i
(q~1);

i
(t!di)#MT

i
(t)S(t)#=

i
(t), (36)

where the time-delay di is constant and unknown.
Eq. (36) can expressed as

A
i
(q~1)>

i
(t)"b

i(1)
;

i
(t!1)#2#b

i(di)
;

i
(t!di)#2

#b
i(ni*)
;

i
(t!ni*)#MT

i
(t)S(t)#=

i
(t)

or

A
i
(q~1)>

i
(t)"B@

i
(q~1);

i
(t)#MT

i
(t)S(t)#=

i
(t), (37)

where

B@
i
(q~1)"b

i(1)
q~1#2#b

i(ni*)
q~ni*. (38)

According to De Keyser (1986), the following condition
on the coe$cients b

i(j)
holds:

Db
i(j)

D(0.2Db
i(di)

D for j"0,2, di!1, (39)

Then, operating on the plant model (37) by the "lter
P

i
(O

i
/P

i
) leads to

P
i
A

i
(q~1)>

i&
(t)"P

i
B@
i
(q~1);

i&
(t)#P

i
MT

i
(t)S

&
(t)#=@

i
(t).

(40)
In regression form we have

>
i&
(t)"'T

i&
(t!1, a

i
)h

i
(t)#=@

i
(t),

'T
i&
(t!1, a

i
)"(a

i
(t)>

i&
(t!1)2a

i
(t)ni*>

i&
(t!ni*)

a
i
(t);

i&
(t!1)2a

i
(t)ni*;

i&
(t!ni*)S

&
(t)).

The unknown process parameters h
i
(t) are estimated

using the algorithms (16) and (17).
Given hK

i
(t),we form BK @

ia (t, q~1) as

BK @
ia (t, q~1)"a

i
(t)bK

i(1)
(t)#2#a

i
(t)ni*bK

i(ni*)
(t)q~ni*. (41)

From Lemma 3, BK @
ia (t, q~1) is a stable polynomial if

Da
i
(t)D(DbK

i(1)
(t)D/o

i
Jni*!1.

After "ltering, given that 0(a
i
(t)(1, condition (39)

becomes

a
i
(t)bK

i(1)
(t)'a2

i
(t)bK

i(2)
(t)'2'ani*

i
(t)bK

i(ni*)
(t).

Then the subsystem model (36) has the same behaviour
as model (40) with time-delay di"1.

The proposed feedback control signal is generated
from

BK @
ia(t!1, q~1);

i&
(t)#GK

i
(t, q~1)>

i&
(t)#MK T

i
(t)S

&
(t#1)

"¹
i
(q~1)>

im&
(t#1).

The indirect model reference adaptive control is globally
convergent in the sense that ;

i
(t), >

i
(t) are bounded for

all time and >
i
(t) converges to >

im
(t) (Theorem 1).

5. Numerical examples

Two examples that illustrate our results are given in
this section. In the "rst example, we consider three inter-
connected non-minimum phase subsystems with time-
varying delay di(t)3[dimin,dimax]. The second example
is used to demonstrate the performance of the DMRAC
for non-minimum phase subsystems without a priori
information about the constant time delay.

Example 1. To illustrate the performance and robustness
of the proposed adaptive scheme, let us consider "rst the
following interconnected subsystems with time-varying
delay, to which we apply the adaptive decentralized con-
trol with the interconnection estimation.

A
1
(q~1)>

1
(t)"B

1
(q~1);

1
(t!d1(t))#C

12
(q~1)>

2
(t)

#C
13

(q~1)>
3
(t)#m

1
(t),

A
2
(q~1)>

2
(t)"B

2
(q~1);

2
(t!d2(t))#C

21
(q~1)>

1
(t)

#C
23

(q~1)>
3
(t)#m

2
(t),
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A
3
(q~1)>

3
(t)"B

3
(q~1);

3
(t!d3(t))#C

31
(q~1)>

1
(t)

#C
32

(q~1)>
2
(t)#m

3
(t)

with

A
1
(q~1)"1#0.905q~1!0.3q~2#0.2q~3,

B
1
(q~1)"1#1.5q~1, C

12
(q~1)

"!0.5q~1!0.7q~2"C
13

(q~1), 14d1(t)4,

m
1
(t)"0.1>

1
(t!4)#0.01 cos(2t);

1
(t!1)

#0.01 sin(2t);
1
(t!2)

A
2
(q~1)"1#0.805q~1!0.1q~2#0.02q~3,B

2
(q~1)

"1#1.5q~1 C
21

(q~1)"!0.5q~1!0.7q~2

"C
23

(q~1), 24d2(t)4,

m
2
(t)"0.01>

2
(t!4)#0.01 cos(2t);

2
(t!1)

#0.01 sin(2t);
2
(t!2),

A
3
(q~1)"1#0.995q~1!0.2q~2#0.1q~3,

B
3
(q~1)"1!1.5q~1 C

31
(q~1)

"!0.5q~1#0.7q~2"C
32

(q~1), 24d3(t)5,

m
3
(t)"0.05>

3
(t!4)#0.01 cos(2t);

3
(t!1)

#0.01 sin(2t);
3
(t!2).

Clearly, the subsystems are non-minimum phased. Sup-
pose that we know o

1
"4, o

2
"5, o

3
"6 and the refer-

ence signals>
im

(t) are square waves with periods 300, 200
and 100, respectively. The data "ltering parameters are
chosen as Da

i
(t)D"DbK @

i(1)
(t)D/4o

i
i"1, 2, 3 and S(t) is the

Legendre series S(t)"(1, t, t2, t3,2). The low-pass "lter
(O

i
/P

i
) is such that

O
i
(q~1)"1#0.1q~1!0.1q~2,P

i
(q~1)

"1!0.2q~1#0.2q~2 for i"1, 2, 3.

Figs. 1(1), 1(3) and 1(5) show the system output. Figs. 1(2),
1(4) and 1(6) show the time-delay variations. The
interconnections are estimated using the Legendre series
truncated after three terms. We note that without
input/output data "ltering, and the interconnection
compensation, the overall system is unstable (see
Figs. 1(7)}1(9).

Now, we consider again the "rst example with added
noise on the subsystem outputs. To each output, a
Gaussia noise with mean"3 and variance"5 (Fig. 1(10))
is added. Under the same conditions of simulation as
before, and for a low-pass "lter O

i
(q~1)"1#0.01q~1!

0.01q~2, P
i
(q~1)"1!0.2q~1#0.2q~2 for i"1, 2, 3,

the system behaviour is given by Figs. 1(11), 1(12) and
1(13). This illustrates the robustness of the proposed
approach against noise and unmodelled dynamics.

Example 2. To show the performance of the DMRAC
without a priori information about the exact time-delay
di, we consider the same system as in Example 1 with
unknown time-delay di (di51).

The system is described by

A
1
(q~1)>

1
(t)"B

1
(q~1);

1
(t!d1)#C

12
(q~1)>

2
(t)

#C
13

(q~1)>
3
(t)#m

1
(t),

A
2
(q~1)>

2
(t)"B

2
(q~1);

2
(t!d2)#C

21
(q~1)>

1
(t)

#C
23

(q~1)>
3
(t)#m

2
(t),

A
3
(q~1)>

3
(t)"B

3
(q~1);

3
(t!d3)#C

31
(q~1)>

1
(t)

#C
32

(q~1)>
2
(t)#m

3
(t),

where

B
1
(q~1)"b

14
#b

15
q~1, d1"4, B

2
(q~1)"b

23
#b

24
q~1,

d2"3, B
3
(q~1)"b

32
#b

33
q~1 and d3"2.

Under the same conditions of simulation, we obtain the
subsystem behaviour shown in Figs. 2(1)}2(3).

As illustrated by the previous examples, by applying an
adaptive input}output data "ltering, the DMRAC
scheme can be constructed even for non-minimum phase
subsystems with unknown and/or time-varying delay in
the presence of unmodelled dynamics. Simulations show
excellent performance and robustness of the DMRAC
against unmodelled dynamics and time delay variations.
In all cases, excellent tracking was achieved.

6. Conclusion

In this paper, we have proposed a decentralized model
reference adaptive control for interconnected non
minimum phase subsystems with time-varying delay. The
approach is based on the interconnection output estima-
tion using the polynomial series. The parameter estima-
tion scheme is a combined data "ltering with a recursive
least-squares algorithm with projection and signal nor-
malization. The problem of minimum phase of the sub-
systems is handled by an adaptive data "ltering. It is
shown that the adaptive input/output data "ltering also
permits to solve the di$cult problem of model reference
adaptive control in the presence of unknown time delay
variations.

Appendix

General discrete orthogonal polynomials s
i
(t) satisfy

the orthogonality property

m~1
+
t/0

s
i
(t)s

j
(t)"d

ij
, i, j"1,2, m.
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Fig. 1. (1) The "rst subsystem output for Example 1; (2) the "rst subsystem time-delay d1(t) variation for Example 1; (3) the second subsystem output
>

2
(t) for example 1; (4) Tte second subsystem time-delay d2(t) variation for Example 1; (5) the third subsystem output >

3
(t) for Example 1; (6) the

third subsystem time-delay d3(t) variation for Example 1; (7) the "rst subsystem output >
1
(t) for Example 1 without input/output data "ltering, and

the interconnection compensation; (8) the second subsystem output >
2
(t) for Example 1 without input/output data "ltering, and the interconnection

compensation; (9) the third subsystem output>
3
(t) for Example 1 without input/output data "ltering, and the interconnection compensation; (10) the

Gaussia noise with mean"3 and variance"5 which is added to each subsystem output for Example 1; (11) the "rst subsystem output >
1
(t) for

example1for which the noise (Fig. 1(10)) is added; (12) the second subsystem output >
2
(t) for Example 1 for which the noise (Fig. 1(10)) is added;

(13) the third subsystem output >
3
(t) for Example 1 for which the noise (Fig. 1(10)) is added.

They satisfy the following recurrence relation:

s
i`1

(t)"u
i
(t)s

i
(t)#u

i
s
i~1

(t), i"1,2, m,

t"0,2,m!1. (*)

u
i
(t) and u

i
are the recurrence coe$cients; their values

depend on the particular discrete polynomials under
consideration. We assume that for subsystem i, the un-
known output <

i
(t) may be expanded into a series of
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Fig. 1. Continued.

Fig. 2. (1) The "rst subsystem output >
1
(t) for Example 2 with unknown time delay; (2) the second subsystem output >

2
(t) for Example 2 with

unknown time delay; (3) the third subsystem output >
3
(t) for Example 2 with unknown time delay.

order m as

<
i
(t)"MT

i
S(t)#=M

i
(t) where S(t)"[s

1
(t),2, s

m
(t)]T.

Now, consider the following series with expansion order
t : S@(t)"[s

1
(t),2, st(t)]T, where t'm. then

<
i
(t)"M@T

i
S@(t)#=

i
(t),

where D=
i
(t)D(D=M

i
(t)D and the parameter vectors M

i
and

M@
i
are assumed to be constant.

Using the recurrence equation (*), we obtain

s
m`1

(t)"u
m
(t)s

m
(t)#u

m
s
m~1

(t)

and

st (t)"ut (t)sm
(t)#utsm~1

(t).

Then the expansion of <
i
(t) into a series of order where

M@
i
is a constant vector of dimension t , is equivalent to an

expansion of order m where M
i
is a time-varying vector

of dimension m(t . This explains why a truncated series
with time-varying parameters is more adequate to
predict the interconnections with su$cient accuracy:

<
i
(t)"MT

i
(t)S(t)#=

i
(t).
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