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Abstract-- This paper reports the results of a simulation study
of using a matrix converter(MC) to replace the line commutated
cycloconverter as a static frequency changer in a slip power
controller for induction motor speed control from power quality
point of view. A slip power controller is required either to inject
or to extract the slip power from the rotor of a doubly fed
induction motor. Use of the Matrix Converter (MC) in place of
the cycloconverter improves the drive performance by the
generation of nearly sinusoidal injected voltage to the motor,
sinusoidal input and output currents and adjustable input power
factor for any loading condition. Simulation has been done in
MATLAB program and results displayed for both sub- and
super-synchronous speed of a laboratory motor.

Index Terms— indirect method, induction motor, matrix
converter, slip-power, space-vector pulse width modulation.

I. NOMENCLATURE

H = machine inertia constant in per unit
I, = stator g-axis current in per unit
I, = stator d-axis current in per unit

s = Stator o-axis current in per unit
./
Iy

rotor g-axis current in per unit
.t . . .
1, = rotor d-axis current in per unit

.y . . .
1,,. = rotor o-axis current in per unit
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7, = stator resistance in per unit

I’r’ = rotor resistance in per unit

T, =load torque in per unit

v, = stator g-axis voltage in per unit

Vv, = stator d-axis voltage in per unit

V,, = stator o-axis voltage in per unit

V;r = rotor g-axis voltage in per unit

v/, = rotor d-axis voltage in per unit

V! = rotor o-axis voltage in per unit

w, = frequency of the supply (base frequency)
X, = stator leakage reactance in per unit
x; = rotor leakage reactance in per unit
X,, = magnetizing inductance in per unit
X = V(U X, +1/ X +1/ X)) 5

Xad = Xag

@, = stator g-axis flux linkage in per unit
@, = stator d-axis flux linkage in per unit
@, = stator o-axis flux linkage in per unit
(D;r = rotor g-axis flux linkage in per unit
go;, = rotor d-axis flux linkage in per unit

12 . . . .
@, = rotor o-axis flux linkage in per unit

II. INTRODUCTION

HIS paper reports the results of a study of using a matrix

converter(MC) to replace the line commutated

cycloconverter as a static frequency changer in a slip
power controller for induction motor speed control from
power quality point of view. A slip power controller is
required either to inject or to extract the slip power from the
rotor of a doubly fed induction motor. Slip power controlled
high power drives using three phase doubly fed induction
motors have found applications in large capacity pumps and
fan drives, variable-speed wind energy systems, shipboard



VSCF (variable-speed/constant-frequency) systems, variable-
speed hydro pumps/generators and utility system flywheel
energy storage systems [1]-[3]. In a static Scherbius drive,
with Dbi-directional slip power flow, slip power can be
controlled in both the sub-synchronous and super-
synchronous ranges of speed. A line commutated
cycloconverter acts as a static frequency changer in the drive
system [14]. The major power quality related problems for a
line commutated cycloconverter are: input current contains
low frequency inte-harmonics and sub-harmonics and thus
affects the utility, input power factor is always lagging
irrespective of the load power factor and output voltage
contains sub-harmonics for larger input to output frequency
ratio.
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Fig. 1. Wound rotor induction motor fed by matrix converter.

The wound rotor induction motor fed by a matrix
converter as dealt with in this paper is shown in Fig. 1. The
MC provides a slip frequency emf which is injected into the
rotor to affect speed control. The speed-torque characteristics
are expected to be similar to those of a dc shunt motor and the
drive will be inherently stable because of the effective ‘speed
feedback’. The advantage of this drive apparently are: lower
power rating of the speed-control apparatus for a restricted
speed range when compared with the primary frequency
control, absence of external v/f control, possibility of power
factor control, possibility of speed control in both sub- and
super- synchronous region beyond the limit for a naturally
commutated cycloconverter, easy elimination of harmful
interharmonics / subharmonics when compared to a line
commutated cycloconverter.

The system in Fig.l. has been simulated and sample
simulation results are shown here. The operation of the MC to
generate a slip-frequency voltage by sequentially switching
the phase voltages of main frequency by space vector pulse
width modulation(SVPWM) method is taken into account .
Simulation is done by MATLAB program. There are two
methods for generating SVPWM pulses i) direct method[4]
and ii) indirect method[5-12]. In this paper indirect control

method is considered for easy implementation in simulation
study. A closed-loop speed control of the motor is done using
PI controller.

III. SYSTEM OVERVIEW
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Fig. 2. The control block diagram of the drive system.

The control block diagram of the doubly-fed wound rotor
induction motor drive with matrix converter(MC) is shown in
the Fig. 2. The speed encoder measures the speed which is
compared with the reference speed. The PI controller acts on
the speed error and adjusts modulation index(m)  of the
matrix converter to control the output voltage to be applied
across the rotor terminals. This voltage controls the power
injection in the rotor winding to control the speed of the
motor. The slip which is required to generate SVPWM signal
of the matrix converter is calculated with the help of actual
speed and synchronous speed (supply frequency).

A. Induction machine model

The state-space equation of the wound rotor induction
machine is given below[13].

p=Ap + Bu
I=Cop+Diu
where ,

' ' r T
¢ = [qu (Dds ¢os ¢qr ¢dr ¢or]
L_l = [V qs vds Vos vc,]r V;r v:)r ]T

T _ s . . N N} g T
I= [lqs lds los lqr ldr lOV]

The matrices 4, B,C and D are elaborated in Appendix-A

B. Indirect method control of matrix converter (MC)

In this method the MC is considered as a combination of a
rectifier and an inverter as shown in Fig. 3. So nine switch
of MC can be fictitiously split up to 12 switches of voltage
source rectifier(VSR) and voltage source inverter(VSI) as
shown in Fig. 3.
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Fig. 3. The indirect modulation model of matrix converter.

C. Space vector modulation

The space vector modulation is simultaneously employed
to both VSR and VSI parts of the MC. First the VSI-SVM and
VSR-SVM procedures are reviewed. Let us consider VSI part
of the circuit in Fig. 3. The VSI is supplied by voltage source
Vpn = Vg The VSI switches can assume only six allowed
combination which yield non-zero output voltages and two
combination of zero output voltages. Hence, the resulting
output line-voltage space vector defined by

= 47 e )
_ 4= = 4j120° = —j120
VoL —g Vab +Vbc€ +Vca€

can assume only seven discrete values, V, — V4 as shown in
Fig. 4.
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Fig. 4. Inverter voltage hexagon.

Now VSR part of the circuit in Fig. 3. is considered as a
standalone VSR loaded by a dc current generator i, = I4.. The
VSR input-current SVM is completely analogous to the VSI
output voltage SVM as shown in Fig. 5.
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Fig. 5. Rectifier Current hexagon.
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Fig. 6. Flow chart of the simulation program.

IV. SIMULATION

The drive system as shown in Fig. 1. has been simulated using
MATLAB simulation software[15]. The program was divided
into sections in a Main Program and a subroutine. The flow
chart of the program is shown in Fig. 6.

Main program: This program sets the procedure for the
computation of the dynamic performance. The initial
conditions of the variables used are stated to be zero at zero
time. The state variables are taken as both stator and rotor flux
linkages. The transient run-up performance under loaded
condition is computed over a range of 0.0 to 3 sec. in steps of
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Fig. 7. Simulation result at super-synchronous speed (a) Torque response
at start, (b) Speed response at start, (¢) Supply side voltage and input
current of MC at steady state and (d) output voltage and current of MC at
steady state: for T, =1 p.u. and Speed reference = 350 rad/sec.

0.0002 sec. The 3-phase supply voltages are first transformed
into d-q axes in a stationary reference frame. Rotor voltages
are deduced with the help of matrix converter program written
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Fig. 8. Simulation result at sub-synchronous speed (a) Torque response at
start, (b) Speed response at start, (¢) Supply side voltage and input
current of MC at steady state and (d) output voltage and current of MC at
steady state: for Ty =1 p.u. and Speed reference = 100 rad/sec.

in a subroutine, which is called in each step. The modulation
index(m) of the matrix converter is adjusted by the PI
controller in the speed feedback loop which in turn calculate
the required output voltage of the converter. The stator and
rotor currents and flux linkages are calculated by solving the
state space equations of the motor. The developed torque is
then calculated. The electromechanical dynamic equation is
then solved to derive the speed. The slip frequency is
calculated as a necessary input to the matrix

converter sub-routine

Matrix converter subroutine: This program generates three
phase output voltages at a desired (slip) frequency from the
input supply voltages to feed power to the rotor. In each step
of the main program this sub- routine is called. The inputs to
this sub-routine are the supply voltages, angular position of
the reference output voltage to calculate the slip, modulation
index from the output of the PI controller and angular position
of the input current hexagon to adjust input power factor. The
basic idea of indirect method applied in SVPWM is to
decouple the control of the input current and the control of
output voltage. In order to generate the switching patterns for
the nine bi-directional switched matrix converter, the two-
space vector PWMs are to be combined by multiplying the
adjacent vectors together with their duty cycles between the
rectifier stage and the inverter stage. As there are six output
voltage sectors and six input current sectors, the converter can
assume 36 different vectorial states. The output voltage vector
and input current vector are rotating at a speed which depends
on output frequency and input frequency respectively and
with time. At any instant the voltage vector and current vector
lies in a particular sector of output and input hexagon
respectively. Knowing this, which output phase, is to be
connected to which input phase is determined. There are 36
combinations at which the output phases are to be connected
to input phases.

V. SIMULATION RESULTS

The rating of the induction motor simulated in the present
scheme is 1/3 H.P., 230V, 50 Hz, 1.3A., 1400 rpm. The p.u.

parameters of the induction machine are 7, = 0.032; rr' =
0.0515; x, =0.042; x/ =0.042; x, =0.62; H =0.446.

Two different mode of operation are considered; (1) super-
synchronous mode of operation, (2) sub-synchronous mode of
operation. Load torque is kept at 1 p.u and reference speeds
are 350 rad/sec and 100 rad/sec respectively. The results of
the simulation are illustrated in Fig.7. and Fig.8. respectively.

It is seen from Fig.7. and Fig. 8. that the developed speed of
the machine attains the reference speed for a given load torque
of Ip.u. It is a tracking system with a PI controller. It is
further observed that MC input current and voltage are exactly
at unity power factor and output current and voltages are very
close to unity power factor. Also the voltage injected to the
slip rings of induction motor and the rotor current contain
very less harmonics improving power quality.

VI. CONCLUSION

The simulation results for the speed control scheme of the
doubly-fed induction motor using matrix converter as slip
power controller show significant improvement in the power
quality of the drive. The input current taken from the supply is
almost sinusoidal and the input power factor is unity. This
input power factor can be controlled. The output voltage
feeding the rotor is also nearly sinusoidal, generating
sinusoidal rotor current which improve the conversion
efficiency with lesser harmonic heating compared to the



cycloconverter-fed drive. The experimental verification of the
scheme is now under progress with an IGBT Matrix converter g, =, xr/xx, /(x| xX,),
module ( ECONOMAC--FM35R12KE3) donated by Eupec, oo
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