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Differential evolution (DE) is a simple but powerful evolutionary optimization algorithm with continually
outperforming many of the already existing stochastic and direct search global optimization techniques.
DE algorithm is a new optimization method that can handle non-differentiable, non-linear, and multi-
modal objective functions. This paper presents an efficient modified differential evolution (MDE) algo-
rithm for solving optimal power flow (OPF) with non-smooth and non-convex generator fuel cost
curves. Modifications in mutation rule are suggested to the original DE algorithm, that enhance its rate
of convergence with a better solution quality. A six-bus and the IEEE 30 bus test systems with three dif-
ferent types of generator cost curves are used for testing and validation purposes. Simulation results
demonstrate that MDE algorithm provides very remarkable results compared to those reported recently
in the literature.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction search (TS) [7], particle swarm optimization (PSO) [8] and simu-
Optimal power flow (OPF) is one of the main tools for optimal
operation and planning of modern power systems. The OPF is,
hence, the basic tool that allows electric utilities to determine se-
cure and economic operating conditions for an electric power sys-
tem. An OPF adjusts the controllable quantities in the system to
optimize an objective function, while satisfying a set of physical
and operational constraints. This makes the OPF problem a large-
scale highly non-linear constrained optimization problem.

The OPF problem has been solved via many traditional optimi-
zation methods such as linear programming, non-linear program-
ming, quadratic programming, Newton-based techniques and
interior point methods. A comprehensive review of various optimi-
zation techniques available in the literature is reported in Refs.
[1,2]. Usually, these methods rely on the assumption that the fuel
cost characteristic of a generating unit is a smooth, convex func-
tion. However, there are situations where it is not possible, or
appropriate, to represent the unit’s fuel cost characteristic as a con-
vex function. For example, this situation arises when valve-points,
unit prohibited operating zones, or multiple fuels are present.
Hence, the true global optimum of the problem could not be
reached easily. New numerical methods are then needed to cope
with these difficulties, specially, those with high speed search to
the optimal and not being trapped in local minima.

In recent years, many heuristic algorithms such as genetic algo-
rithms (GA) [3,4], evolutionary programming (EP) [5,6], tabu
ll rights reserved.

: +213 36 92 72 10.
lated annealing (SA) [9], have been proposed to solve the OPF prob-
lem, without any restrictions on the shape of the cost curves. The
results reported were promising and encouraging for further re-
search in this direction.

Recently, a new evolutionary computation technique, called dif-
ferential evolution (DE), has been developed and introduced by
Storn and Price [10]. DE algorithm is a stochastic population-based
search method successfully applied in global optimization prob-
lems. DE combines simple arithmetic operators with the classical
operators of crossover, mutation and selection to evolve from a
randomly generated starting population to a final solution [11,12].

This paper presents an efficient modified differential evolution
(MDE) algorithm for solving optimal power flow (OPF) with non-
smooth cost functions. Modifications in mutation rule are sug-
gested to the original DE algorithm that explores the solution space
with a random localisation, enhancing its rate of convergence for a
better solution quality. In order to demonstrate the suitability of the
proposed approach, MDE algorithm was applied to the six-bus and
IEEE 30 bus test systems with three different types of generator cost
curves. Simulation results demonstrate that MDE algorithm is supe-
rior to the original DE and appears to be fast providing very remark-
able results compared to those reported in the literature recently.
2. Optimal power flow problem formulation

The OPF problem is considered as a general minimization
problem with constraints, and can be written in the following
form:

mailto:samir_pg04@yahoo.fr
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Minimize f ðx;uÞ ð1Þ
Subject to : gðx;uÞ ¼ 0 ð2Þ
hðx;uÞ 6 0 ð3Þ

where f(x,u) is the objective function, g(x,u) is the equality con-
straints and represent typical load flow equations. h(x,u) is the sys-
tem operating constraints. x is the vector of state variables
consisting of slack bus real power PG1, load bus voltages VL, gener-
ator reactive power outputs QG, and transmission line loading Sl.
Therefore, x can be expressed as:

xT ¼ ½PG1;VL1 . . . VLNL;Q G1 . . . QGNG; Sl1 . . . SlNB� ð4Þ

where NL, NG and NB are the number of load buses, the number of
generators and the number of transmission lines, respectively.

U is the vector of control variables consisting of real power out-
puts PG except at the slack bus, generator voltages VG, transformer
tap settings T. Hence, u can be expressed as:

UT ¼ ½PG2 . . . PGNG;VG1 . . . VGNG; T1 . . . TNT� ð5Þ

where NT is the number of regulating transformers.
The objective function for the OPF reflects the cost associated

with generating power in the system. The objective function for
the entire power system can then be written as the sum of the fuel
cost model for each generator:

f ¼
XNG

i¼1

fið$=hÞ ð6Þ

where fi is the fuel cost of the ith generator.
The system operating constraints h(x, u) include:

(1) Generation constraints:
For stable operation, generator voltages, real power outputs
and reactive power outputs are restricted by the lower and
upper limits as follows:

 

 

Vmin
Gi 6 VGi 6 Vmax

Gi ; i 2 NG; ð7Þ
Pmin

Gi 6 PGi 6 Pmax
Gi ; i 2 NG; ð8Þ

Q min
Gi 6 Q Gi 6 Q max

Gi ; i 2 NG: ð9Þ
(2) Transformer constraints:
Transformer tap settings are restricted by the minimum and
maximum limits as follows:
Tmin
i 6 Ti 6 Tmax

i ; i 2 NT: ð10Þ
(3) Security constraints:
These incorporate the constraints of voltage magnitudes of
load buses as well as transmission line loadings as follows:
Vmin
Li 6 VLi 6 Vmax

Li ; i 2 NL; ð11Þ
Sli 6 Smax

li ; i 2 NB: ð12Þ
3. Overview of differential evolution algorithm

Differential evolution (DE) is a relatively recent heuristic tech-
nique designed to optimize problems over continuous domains
[10,11]. In DE, each decision variable is represented in the chromo-
some (individual) by a real number. As in any other evolutionary
algorithm, the initial population of DE is randomly generated,
and then evaluated. After that, the selection process takes place.
During the selection stage, three parents are chosen and they gen-
erate a single offspring which competes with a parent to determine
which one passes to the following generation. DE generates a sin-
gle offspring (instead of two like in the genetic algorithm) by add-
ing the weighted difference vector between two parents to a third
parent. If the resulting vector yields a lower objective function va-
lue than a predetermined population member, the newly gener-
ated vector replaces the vector to which it was compared.

An optimization task consisting of D parameters can be pre-
sented by a D-dimensional vector. In DE, a population of NP solu-
tion vectors is randomly created at the start. This population is
successfully improved over G generations by applying mutation,
crossover and selection operators, to reach an optimal solution
[10,11]. The main steps of the DE algorithm are given below:

Initialization
Evaluation
Repeat
Mutation
Crossover
Evaluation
Selection

Until (Termination criteria are met)

3.1. Initialization

Typically, each decision parameter in every vector of the initial
population is assigned a randomly chosen value from within its
corresponding feasible bounds:

Xð0Þj;i ¼ Xmin
j þ ljðX

max
j � Xmin

j Þ; i ¼ 1; . . . ;NP; j ¼ 1; . . . ;D ð13Þ

where lj denotes a uniformly distributed random number within
the range [0,1], generated anew for each value of j. Xmax

j and Xmin
j

are the upper and lower bounds of the jth decision parameter,
respectively.

3.2. Mutation

The mutation operator creates mutant vectors X 0i by perturbing
a randomly selected vector Xa with the difference of two other ran-
domly selected vectors Xb and Xc, according to the following
expression:

X0ðGÞi ¼ XðGÞa þ FðXðGÞb � XðGÞc Þ; i ¼ 1; . . . ;NP ð14Þ

where a, b, and c are randomly chosen indices, such that a, b,
c 2 {1,. . .,NP} and a 6¼ b 6¼ c 6¼ i. It should be noted that new (random)
values for a, b, and c have to be generated for each value of i. The
scaling factor F is an algorithm control parameter in the range
[0,2] which is used to adjust the perturbation size in the mutation
operator and improve algorithm convergence.

3.3. Crossover

In order to increase the diversity among the mutant parameter
vectors, crossover is introduced. To this end, a trial vector X 00i is cre-
ated from the components of each mutant vector X 0i and its corre-
sponding target vector Xi, based on a series of D-1 binomial
experiments of the following form:

X 00ðGÞj;i ¼
X 0ðGÞj;i if qj 6 CR or j ¼ q

XðGÞj;i otherwise;

8<
: ; i ¼ 1; . . . ;NP; j ¼ 1; . . . ;D

ð15Þ

where qj denotes a uniformly distributed random number within
the range [0,1), generated anew for each value of j. The crossover
constant CR which is usually chosen from within the range [0,1],
is an algorithm parameter that controls the diversity of the popula-
tion and aids the algorithm to escape from local minima. q is a ran-
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Fig. 1. Chromosome structure of MDE.
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Fig. 2. General flowchart of the MDE-based OPF (MDE–OPF) solution algorithm.
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domly chosen index 2{1,. . .,D}, which is used to ensure that the trial
vector gets at least one parameter from the mutant vector.

3.4. Selection

The selection operator forms the population by choosing be-
tween the trial vectors and their predecessors (target vectors)
those individuals that present a better fitness or are more optimal
according to (16).

XðGþ1Þ
i ¼

X00ðGÞi if f ðX00ðGÞi Þ 6 f ðXðGÞi Þ
XðGÞi 7 otherwise;

(
; i ¼ 1; . . . ;NP ð16Þ

This optimization process is repeated for several generations, allow-
ing individuals to improve their fitness as they explore the solution
space in search of optimal values.

Price and Storn proposed several variants of the basic DE which
are denoted using the notation DE/x/y/z, where x refers to the per-
turbation type, y the number of pair of vectors used in the pertur-
bation process and z the crossover scheme used in the
recombination process. Nevertheless, one highly beneficial method
that deserves special mention is the DE/best/2/bin which perturbs
the best solution found so far with two difference vectors based on
a binomial distribution crossover scheme:

X0ðGÞi ¼ XðGÞbest þ FðXðGÞa � XðGÞb þ XðGÞc þ XðGÞd Þ; i ¼ 1; . . . ;NP ð17Þ

where Xa, Xb, Xc and Xd are randomly chosen vectors from the set
{1,. . .,NP}, mutually different and different to the target vector. Xa,
Xb, Xc and Xd are generated anew for each parent vector. Xbest is
the best solution found so far in the optimization process. This
strategy dramatically improves the convergence rate of the algo-
rithm. However, in multimodal problems, this strategy could lead
to premature convergence of the algorithm.

4. Modified differential evolution algorithm

This version of modified differential evolution algorithm has
been proposed by Kaelo and Ali [13]. In the original DE three vec-
tors are chosen at random for mutation and the base vector is
then chosen at random within the three. This has an exploratory
effect but it slows down the convergence of DE. Also the original
DE uses a fixed positive value for the scaling factor F in mutation.
This has an effect of restricting the exploration. The first modifi-
cation to DE is to replace the random base vector XðGÞa in the
mutation rule (14) with the tournament best XðGÞtb . From the three
random vectors the best is used as the base vector and the
remaining two are used to find the differential vector in (14). This
process explores the region around each XðGÞtb for each mutated
point. This maintains the exploratory feature and at the same
time expedites the convergence [13]. Also, instead of using a fixed
F throughout a run of DE, we use a random F in
[�1,�0.4] [ [0.4,1] for each mutated point [13]. This random
localization feature gradually transforms itself into the search
intensification feature for rapid convergence when the points in
the solution space form a cluster around the global minimizer.
This version of DE is referred to as the differential evolution algo-
rithm with random localization (DERL) [13].

5. MDE implementation for OPF

The chromosome structure of MDE used for solving OPF is
shown in Fig. 1. It is worth mentioning that the control variables
are self-constrained. In order to keep the trial vectors within their
bounds, the control parameter that exceeds a feasible bound is ad-
justed to the corresponding violated bound.

 

 

To handle the inequality constraints of state variables, including
slack bus real and reactive power, load bus voltage magnitudes and
transmission line loading, the extended objective function (fitness
function) can be defined as

F ¼
XNG

i¼1

fi þ KpðPG1 � Plim
G1 Þ

2 þ KQ ðQ G1 � Q lim
G1 Þ

2 þ KV

XNL

i¼1

ðVLi

� V lim
Li Þ

2 þ KS

XNB

i¼1

ðSli � Slim
li Þ

2 ð18Þ

where Kp, KQ, KV and KS are the penalty factors, and xlim is the limit
value of the dependent variable x given as:

xlim ¼
xmax if x > xmax

xmin if x < xmin

�
ð19Þ

It should be noted that the constraints on the reactive power at each
generator excluding slack bus are not included in the fitness func-



Table 1
Control parameter settings of MDE–OPF algorithm for case study 1

Parameter Setting

Population size (Np) 16
Crossover constant (CR) 0.75
Maximum number of generations (Gmax) 160
Penalty factor of slack bus active power (KP) 100
Penalty factor of slack bus reactive power (KQ) 100
Penalty factor of voltage magnitudes (KV) 50
Penalty factor of transmission line loadings (KS) 8000000

S. Sayah, K. Zehar / Energy Conversion and Management 49 (2008) 3036–3042 3039 
tion (18). These constraints will be handled in the power flow
algorithm.

The flowchart of OPF solution via MDE is shown in Fig. 2. The
power flow algorithm is applied for each candidate solution to
evaluate its fitness and determine the state variables. The optimi-
zation procedure stops whenever a predetermined maximum
number of generations Gmax is reached, or whenever the best can-
didate solution in the population does not improve over a prede-
termined number of generations.

 

 

Table 2
Power flow solution of the six-bus test system (case study 1)

Bus Voltage (p.u.) Angle (degree) Generation Load

MW MVAr MW MVAr

1 1.0483 0.0 123.971 62.438 100 20
2 1.0500 2.079 195.269 3.587 100 20
3 1.0174 �3.240 109.187 53.964 100 20
4 1.0277 �0.150 179.106 20.414 100 20
5 1.0049 �2.244 0.0 0.0 100 50
6 0.9982 �3.844 0.0 0.0 100 10

Table 3
Line power flows of the six-bus test system (case study 1)

Line From To P (MW) Q (MVAr) Transmission losses

MW MVAr

1 1 2 �40.456 17.807 0.726 �0.750
2 1 5 64.427 24.631 1.752 1.395
3 2 4 54.087 2.143 1.065 �0.028
4 3 5 �11.309 20.771 0.233 �1.578
5 3 6 20.496 13.193 0.241 �1.550
6 4 5 49.817 4.249 0.951 �0.165
7 4 6 82.311 �1.664 2.566 3.079
Total losses 7.533 0.403
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Fig. 3. Convergence of MDE–OPF and DE–OPF for case study 1.
6. Test results

In order to illustrate the efficiency and robustness of the pro-
posed MDE-based OPF (MDE–OPF) algorithm, two case studies
were performed. In the first case study, we consider the six-bus
test system described in [14], with a quadratic model of generator
cost curves. In the second case study, we consider the IEEE 30-bus
system given in [15], with three different types of generator cost
curves which are: a quadratic model in Case 2.1, a piecewise qua-
dratic model in Case 2.2 and a quadratic model with sine compo-
nent in Case 2.3. In each case study, two sets of 20 test runs for
solving the OPF problem, were performed; the first set (DE–OPF)
is based on the classical differential evolution algorithm and the
second one (MDE–OPF) is based on the modified differential evolu-
tion algorithm. For the power flow convergence, the tolerance was
set to 10�4 p.u.

Each optimization approach (DE–OPF and MDE–OPF) was
implemented under the MATLAB computational environment, on
a personal computer with Intel Pentium IV 3.0 GHz processor
and 512 MB total memory.

6.1. Case study 1: six-bus test system

The six-bus system consists of 7 transmission lines and 4 gener-
ating units [3,14]. The generator cost curves are modeled by qua-
dratic functions as:

fi ¼ ai þ biPGi þ ciP
2
Gi ð20Þ

where ai, bi and ci are the cost coefficients of the ith generating unit.
Bus 1 is considered as the swing bus. The limits assigned to each

variable are [3,9]:

� voltage magnitudes: 0.95–1.05 p.u. for generation buses and
0.9–1.1 p.u. for load buses;

� unit active powers: 50–250 MW;
� unit reactive powers: ±75% of the unit maximum active power

(equal to a 0.8 unit power factor);
� line loadings: 100 MVA for all lines, except line (4–5) whose

limit is 50 MVA.

The control parameter settings of MDE–OPF algorithm are given
in Table 1. The average cost obtained using MDE–OPF was
7872.323$/h with the minimum being 7872.256$/h and a maxi-
mum of 7872.620$/h (0.005% difference). The average execution
time was 3.83 s. Also, it is important to point out that for all the
trial runs, the convergence was reached without any violation of
the constraints. Tables 2 and 3 present the power flow solution
for the trial run that generated the minimum cost solution, which
converged after 140 generations and 4.00 s. The convergence of
MDE–OPF for the trial run with minimum cost solution is shown
in Fig. 3.

The best solution obtained using DE–OPF are tabulated in Table
4, with the following parameter settings: F = 0.70, CR = 0.75, NP = 16
and Gmax = 160. The comparison of the convergence characteristics
is depicted in Fig. 3. It is clear that MDE–OPF and DE–OPF converge
practically to the same solution, but MDE–OPF has considerably a
faster convergence rate compared to DE–OPF.

The best solution obtained with MDE–OPF has been also com-
pared with the results of classical economic dispatch and standard
load flow (ED + LF), those published by Weber [14] and those re-
ported using genetic algorithm (OPFGA) [3] and simulated anneal-
ing (OPFSA) [9]. The comparison of results is summarized in Table
4. It is clear that MDE approach gives a better global optimum solu-
tion with less computation time than the other techniques. These
results clearly demonstrate the ability of the proposed approach
to find the least expensive OPF solution, with minimum computa-
tion time than the classical and non-classical optimization
approaches.



Table 4
Comparison of different OPF methods for the six-bus test system (case study 1)

ED + LF Weber [14] OPFGA [3] OPFSA [9] DE–OPF MDE–OPF

PG1 (MW) 99.74 160.39 152.3252 131.80 123.366 123.971
PG2 (MW) 216.17 133.00 151.6563 190.98 195.074 195.269
PG3 (MW) 50.00 143.00 118.0913 109.15 109.818 109.187
PG4 (MW) 250.00 169.00 187.0893 178.24 179.240 179.106
Total generation (MW) 615.91 605.78 609.1621 610.17 607.498 607.533
Fuel cost ($/h) 7860.00 8062.00 7987.1764 7938.00 7872.300 7872.256
Transmission losses (MW) 15.91 5.38 9.2088 8.83 7.498 7.533
CPU time (s) – – 31 26 4.37 4.00
Violating quantities 2 0 0 0 0 0

Table 6
Control parameter settings of MDE–OPF algorithm for case study 2

Parameter Setting value

Case 2.1 Case 2.2 Case 2.3

Population size (Np) 18 20 20
Crossover constant (CR) 0.50 0.85 0.75
Maximum number of generations (Gmax) 160 160 150
Penalty factor of slack bus active power

(KP)
100 100 500

Penalty factor of slack bus reactive power
(KQ)

100 100 500

Penalty factor of voltage magnitudes (KV) 100,000 10,000 10,000
Penalty factor of transmission line loadings

(KS)
50 50 200,000

Table 7
Optimization results of MDE–OPF algorithm for case study 2

Variable Limits Case 2.1 Case 2.2 Case 2.3

Lower Upper

PG1 (MW) 50 200 175.974 140.000 197.426
PG2 (MW) 20 80 48.884 55.000 52.037
PG5 (MW) 15 50 21.510 24.000 15.000
PG8 (MW) 10 35 22.240 34.989 10.000
PG11 (MW) 10 30 12.251 18.044 10.001
PG13 (MW) 12 40 12.000 18.462 12.000
VG1 (MW) 0.95 1.05 1.0500 1.0500 1.0371
VG2 (p.u.) 0.95 1.10 1.0382 1.0400 1.0130
VG5 (p.u.) 0.95 1.10 1.0113 1.0139 0.9648
VG8 (p.u.) 0.95 1.10 1.0191 1.0259 1.0320
VG11 (p.u.) 0.95 1.10 1.0951 1.0940 1.0982
VG13 (p.u.) 0.95 1.10 1.0837 1.0773 1.0890
T11 0.90 1.10 0.9866 0.9714 1.0969
T12 0.90 1.10 0.9714 1.0046 1.0909
T15 0.90 1.10 0.9972 0.9902 1.0991
T36 0.90 1.10 0.9413 0.9494 1.0021

Fuel cost ($/h) 802.376 647.846 930.793
Transmission losses (MW) 9.459 7.095 13.064
CPU time (s) 23.25 36.48 43.01
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6.2. Case study 2: IEEE 30-bus test system

The IEEE 30-bus system consists of 41 transmission lines, 6 gen-
erating units and 4 tap-changing transformers [15]. The minimum
and maximum limits on control variables are shown in Table 7. In
all cases, bus 1 is considered as the swing bus. Three different types
of generator cost curves which are: a quadratic model, a piecewise
quadratic model and a quadratic model with sine component have
been considered as follows:

6.2.1. Case 2.1: Quadratic cost curve model
In this case the fuel cost characteristics for all generating units

are modeled by quadratic functions given by (20). The generator
cost coefficients are given in Table 5. The control parameter set-
tings of MDE–OPF algorithm are shown in Table 6. The average cost
found by MDE–OPF was 802.382$/h with a minimum cost of
802.376$/h, and a maximum cost of 802.404$/h (0.004% differ-
ence). Table 7 presents a summary of the optimization results for
the solution with minimum cost, which converged after 120 gener-
ations and 23.25 s. Fig. 4 shows the convergence of MDE–OPF for
the trial run that produced the minimum cost solution. It is impor-
tant to note that all control and state variables remained within
their permissible limits.

The best solution obtained from DE–OPF is shown in Table 8,
with the following parameter settings: F = 0.70, CR = 0.70, NP = 18
and Gmax = 160. The convergence characteristics are depicted in
Fig. 4. Once again MDE–OPF appears to be superior to DE–OPF with
regard to the solution quality and convergence rapidity.

The results of the proposed approach were compared in Table 8
to those reported using non-linear programming (NLP) [15], evolu-
tionary programming (EP) [5], simulated annealing (SA) [9], tabu
search (TS) [7] and improved evolutionary programming (IEP)
[16]. It can be seen that the results given by MDE–OPF are better
than those reported in the literature, except for the solutions of
TS and SA reported in Abido [7] and Roa-Sepulveda [9], respec-
tively, which are less expensive.

However, it is important to note that the best solution given in
Abido [7] violates the slack bus lower Q-limit by 1.66 MVAr. It
should be noted also that the optimal solution given in Roa-Sepulv-
eda [9] was subject to a power mismatch tolerance of 0.01 p.u. that
we judge insufficient.
Table 5
Generator cost coefficients in case 2.1

Bus Pmin
G ðMWÞ Pmax

G ðMWÞ Qmin
G ðMVArÞ

1 50 200 �20
2 20 80 �20
5 15 50 �15
8 10 35 �15

11 10 30 �10
13 12 40 �15
In addition, it can be seen that the computing time of the pro-
posed MDE–OPF algorithm is better than the other heuristic tech-
niques. As a conclusion, we can say that MDE–OPF has the ability
Qmax
G ðMVArÞ Cost coefficients

a b c

200 0 2.00 0.00375
100 0 1.75 0.01750

80 0 1.00 0.06250
60 0 3.25 0.00834
50 0 3.00 0.02500
60 0 3.00 0.02500
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Table 9
Generator cost coefficients for units 1 and 2 of case 2.2

Bus Operating region Cost coefficients

From (MW) To (MW) a b c

1 50 140 55.0 0.70 0.0050
140 200 82.5 1.05 0.0075

2 20 55 40.0 0.30 0.0100
55 80 80.0 0.60 0.0200

640

650
660

670
680

690

700
710

720

0 20 40 60 80 100 120 140 160

Generation number

Fu
el

 c
os

t (
$/

h)

MDE-OPF

DE-OPF

Fig. 5. Convergence of MDE–OPF and DE–OPF for case 2.2.

Table 10
Comparison of different OPF methods for IEEE 30 bus system (case 2.2)

EP[5] PSO[8] IEP[16] DE–OPF MDE–OPF

PG1 (MW) 140.000 140.00 139.9962 139.961 140.000
PG2 (MW) 55.000 55.000 54.9849 54.984 55.000
PG5 (MW) 24.165 24.15 23.2558 23.910 24.000
PG8 (MW) 35.000 35.00 34.2794 34.291 34.989
PG11 (MW) 18.773 18.51 17.5906 21.161 18.044
PG13 (MW) 17.531 17.79 20.7012 16.202 18.462
Total generation (MW) 290.469 290.45 290.8081 290.509 290.495
Cost ($/h) 647.79 647.69 649.312 648.384 647.846
Losses (MW) – – – 7.109 7.095
Average CPU time (s) 51.6 – 602.56 37.14 37.05
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to find comparable or better solutions compared to those obtained
with other heuristic approaches.

6.2.2. Case 2.2: piecewise quadratic cost curve model
The fuel cost characteristics for the generating units connected

at bus 1 and 2 are now represented by a piecewise quadratic func-
tion to model different fuels [5]. The cost coefficients for these
units are given in Table 9. The control parameter settings of
MDE–OPF algorithm are shown in Table 6. The average cost was
648.356$/h with a minimum cost of 647.846$/h, and a maximum
cost of 650.664$/h (0.44% difference). Table 7 presents a summary
of the optimization results for the best solution, which converged
after 160 generations and 36.48 s. The variation of the total fuel
cost of the best solution is shown in Fig. 5.

Note also that all control and state variables remained within
their permissible limits.

The best solution found by DE–OPF is shown in Table 10, with
the following setup: F = 0.40, CR = 0.70, NP = 20 and Gmax = 160.
The comparison of the convergence characteristics is depicted in
Fig. 5. It is quite clear that MDE–OPF give better results compared
to DE–OPF.

For comparison purposes, the results reported using EP [5], PSO
[8] and IEP [16] are shown in Table 10. It can be observed that the
minimum cost solution obtained via MDE–OPF is better than the
one given by IEP and close to those found by EP and PSO, with a re-
duced computation time. These results confirm the ability of the
proposed method to find accurate OPF solutions in the presence
of generating units with piecewise quadratic cost curve models.

6.2.3. Case 2.3: quadratic cost curve model with sine component
In this case, a sine component is added to the cost curves of the

generating units at bus 1 and 2 to reflect the valve-point loading
effects [17] as:

fi ¼ ai þ biPGi þ ciP
2
Gi þ jdi sinðeiðPmin

Gi � PGiÞÞj ð21Þ

where ai, bi, ci, di and ei are the cost coefficients of the ith generating
unit. The cost coefficients of the two units are given in Table 11.
Table 8
Comparison of different OPF methods for IEEE 30 bus system (case 2.1)

NLP [15] EP [5] SA [9]

PG1 (MW) 176.26 173.848 173.15
PG2 (MW) 48.84 49.998 48.54
PG5 (MW) 21.51 21.386 19.23
PG8 (MW) 22.15 22.630 12.81
PG11 (MW) 12.14 12.928 11.64
PG13 (MW) 12.00 12.000 13.21
Total generation (MW) 292.90 292.79 278.58
Cost ($/h) 802.40 802.62 799.45
Losses (MW) 9.48 – 9.20
Average CPU time (s) – 51.4 760
The control parameter settings of MDE–OPF algorithm are also
shown in Table 6. The average cost was 942.501 $/h. The minimum
and maximum costs found were 930.793 $/h and 954.073 $/h,
respectively (2.5% difference). Table 7 shows the solution details
for a minimum cost, which converged after 150 generations and
43.01 s. It is important to point out that all control and state vari-
ables were able to stay within their permissible limits. The conver-
gence of MDE–OPF for the trial run with the minimum fuel cost is
shown in Fig. 6.

The best solution found by DE–OPF is shown in Table 12, with
the following parameter settings: F = 0.70, CR = 0.70, NP = 20 and
Gmax = 150. The convergence characteristic of DE–OPF is depicted
TS [7] IEP [16] DE–OPF MDE–OPF

176.04 176.2358 176.009 175.974
48.76 49.0093 48.801 48.884
21.56 21.5023 21.334 21.510
22.05 21.8115 22.262 22.240
12.44 12.3387 12.460 12.251
12.00 12.0129 12.000 12.000

292.85 292.9105 292.866 292.859
802.29 802.465 802.394 802.376
– – 9.466 9.459
– 594.08 36.61 23.07



Table 11
Generator cost coefficients for units 1 and 2 of case 2.3

Bus Pmin
G ðMWÞ Pmax

G ðMWÞ Qmin
G ðMVArÞ Qmax

G ðMVArÞ Cost coefficients

a b c d e

1 50 200 �20 200 150.0 2.00 0.0016 50.00 0.0630
2 20 80 �20 100 25.0 2.50 0.0100 40.00 0.0980
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Fig. 6. Convergence of MDE–OPF and DE–OPF for case 2.3.

Table 12
Comparison of different OPF methods for IEEE 30 bus system (case 2.3)

EP [5] TS [7] IEP [16] DE–OPF MDE–OPF

PG1 (MW) 199.600 200.00 149.7331 196.989 197.426
PG2 (MW) 20.000 39.65 52.0571 51.995 52.037
PG5 (MW) 22.204 20.42 23.2008 15.000 15.000
PG8 (MW) 24.122 12.47 33.4150 10.006 10.000
PG11 (MW) 14.420 10.00 16.5523 10.015 10.001
PG13 (MW) 13.001 12.00 16.0875 12.000 12.000
Total generation (MW) 297.877 294.54 291.0458 296.005 296.464
Cost ($/h) 919.89 919.72 953.573 931.085 930.793
Losses (MW) – – – 12.605 13.064
Average CPU time (s) – – – 44.96 41.85
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in Fig. 6. It is evident that MDE–OPF outperforms DE–OPF in terms
of solution quality and convergence rapidity.

The best solution found by MDE–OPF were compared in Table
12 with the results reported using EP [5], TS [7] and IEP [16]. It is
clear that MDE–OPF outperforms IEP technique. On the other hand,
the best fuel costs of EP and TS reported in Yuryevich and Wong [5]
and Abido [7] are less expensive than that found by MDE–OPF.
However, it should be noted that the best solution given in Yurye-
vich and Wong [5] violates the limits of QG1 and line (1–2) loading
by �252.04% and +17.0%, respectively [16]. The best solution given
in Abido [7] also violates the limit of the line (1–2) loading by
+4.1% [16]. These results confirm the ability of the proposed ap-
proach to find accurate and feasible OPF solutions in the presence
of generating units whose fuel cost curves consider the effects of
multiple valve-points.

7. Conclusion

In this paper, a modified differential evolution (MDE) algorithm
has been introduced and applied to solve the OPF problem in the
presence of generators with non-smooth and non-convex fuel cost
curves. An improvement of the original DE algorithm was accom-
plished with a modification in mutation rule that enhances its rate
of convergence without compromising solution quality. Simulation
results show that MDE is superior to the original DE algorithm with
regard to the rapid convergence to the exact global optimum.

The proposed approach was successfully and effectively imple-
mented to find the optimal settings of the control variables of a 6-
bus and the IEEE 30-bus test systems. The comparison of the re-
sults using the proposed approach to those reported in the litera-
ture; confirms its effectiveness and superiority to find accurate
and feasible OPF solutions without any restrictions on the shape
of the fuel cost curves.
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