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Abstract—This paper deals with the design of fault
detection and isolation (FDI) scheme on the basis of
high order sliding mode observer for permanent mag-
net synchronous motors(PMSM). More precisely, the
main advantage of the use of high order sliding mode
techniques is that it allows to avoid the chattering
phenomenon which is inherent to the classical first
order sliding mode observers and controllers. The
efficiency of the proposed observers is illustrated on
a Matlab/Simulink simulator.

I. INTRODUCTION

Permanent magnet synchronous motors (PMSM)
are very suitable for modern industrial applications.
As a matter of fact, their high efficiency, high
torque, compactness and low weight place, it is in
the lead of rotating electrical machines. Nonetheless
PMSM are very sensitive to the strict constraints
due to the environment of embarked systems. To
improve the performance of PM synchronous motor,
it is very important to design a controller with
the fault tolerant and detected. In recent years,
faut detection and isolation (FDI) has been studied
extensively[1], [2], [3]. Advances in control theory
have greatly sped up the development of FDI of
dynamical systems and various approaches have
been proposed. Among these approaches, observer
based FDI is an effective one and has been widely
studied especially in last decades. The fundamental
purpose of a FDI scheme is to generate an alarm
when a fault occurs and also, if it is possible, to
locate the fault or to estimate its magnitude[4].

The concept of sliding modes was emerged from
the Soviet Union in the sixties, where the effects
of introducing discontinuous control action into
dynamical systems were explored[14]. Beside the
control context, sliding mode techniques are also
used for observation and fault detection aims[4].
With the help of sliding mode techniques, it is pos-
sible to estimate the magnitude of a fault. This may
very helpful for the design of fault tolerant control
strategies. However, first order sliding mode exist
the well-known chattering phenomenon which can
have a big negative influence in fault reconstruction.
To avoid this phenomenon high-order sliding modes
can be used. As a consequence, observer for fault
detected using high order sliding mode will offer
good potential in the field of FDI. The application
of such techniques to the FDI problem constitutes
the main contribution of this paper.
The paper is organized as follows. Section II de-
scribes the model of synchronous motor with the
fault. Section III mainly recall the principle of high
order sliding mode and control algorithm. Section
IV designs observer controller for detecting fault. In
last section V, The simulation results are carried out
in order to show the effectiveness of fault tolerant
control and estimation of its magnitude.

II. SYSTEM MODEL

The electrical and mechanical equation of a 3-
phase permanent magnet synchronous motor can be
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depicted in the so-called (d,q)-frame by application
of the Park transformation and described by [5], [7].
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where θ is the angular position of the motor shaft,
ω is the angular velocity of the motor shaft, id is the
direct current and iq is the quadrature current. φ f is
the flux of the permanent magnet, P is the number
of pole pairs, Rs is the stator windings resistance,
Ld and Lq are the direct and quadrature stator
inductances respectively. J is the rotor moment of
inertia, fv is the viscous damping coefficient and Cl

is the load torque. ud is the direct voltage and uq is
the quadrature voltage.
Let x denote the state x = [θ, ω, id, iq]T and u the
input u = [ud, uq]T . Then, a state space model of the
synchronous motor can be written as the following
nonlinear system:

ẋ(t) = Ax(t) +G(x, t) + Bu(t)

y(t) = Cx(t)
(2)

when the motor exist the internal fault, the fault
model[16] of synchronous motor can be rewritten
as:

ẋ(t) = Ax(t) +G(x, t) + Bu(t) + D f (u, t)

y(t) = Cx(t)
(3)

Assume that the matrices D is full column rank and
D represents a distribution matrix. The function f (t)
is unknown but bounded so that

|| f (u, t)|| ≤ σ(u, t) (4)

where σ(u, t) is a known function. The signal f (t)
represents internal fault. where, matrix A,B and C
are constant coefficient matrices,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 − fv

J 0 Pφ f

J
0 0 − Rs

Ld
0

0 − Pφ f

Lq
−Rs

Lq
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
1
Ld

0
0 1

Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C =

[
1 0 0 0
0 0 1 0

]
D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
G(x, t) is assumed as the nonlinear term.

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

P(Ld − Lq)idiq/J
PLqωiq/Ld

PLdωid/Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
All the functions are assumed to be continuous in
their arguments.

III. HIGH ORDER SLIDING MODE

To reducer or to avoid the chattering problem,
high order sliding mode can be used. Emel’yanov
et al. initially presented the idea of acting on
the higher derivatives of the sliding variable and
provided second order sliding algorithms such as
the Twisting Algorithm, and algorithm with a pre-
scribed law of convergence[8]. The so-called Super-
Twisting Algorithm, which is applicable to systems
with the relative degree one with respect to the
sliding variable[9], completely removes chattering.
Levant reported that in second order sliding, the
sliding accuracy is proportional to the square of the
switching time delay which turns out to be another
advantage of higher order sliding modes[10].
Without loss of generality, consider a nonlinear
system

ẋ = f (x) + g(x)u (5)

where, the state vector x ∈ Rn, the control u ∈ R
and f (x),g(x) are smooth vector functions of proper
dimension. The control u is determined by feedback
control u = U(t, x), where U is possibly a discon-
tinuous function.
Define a candidate sliding surface s ∈ R as

s = S (t, x) (6)

such that by making it zero, the control objective
is fulfilled. S (·) is a sufficiently smooth constraint
function.
If the system in equation (5) has a globally defined
relative degree r[11] with respect to the sliding
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variable s defined in equation (6), then the sliding
surface dynamics can be expressed in I−O form as

s(r) = Lr
f S (x) + LgLr−1

f S (x)u

= φ(t, x) + γ(t, x)
(7)

where Lg, Lf are Lie derivatives, LgLr−1
f S (x) � 0

holds globally by assumption and the discontinuity
does not appear in the first (r − 1) total time
derivatives of the constraint variable s along the tra-
jectories, i.e., s, ṡ, s̈, · · · , s(r−1) exist and are single
valued.
The resulting zero dynamics of order n − r can be
written as

η̇ = Z(ŝ, η) (8)

where, η satisfy the condition

Lgηi(x) = 0; i = 1, 2, · · · , (n − r) (9)

and ŝ = [s, ṡ, s̈, . . . , s(r−1)] = [s, L f s, L2
f s, . . . , Lr−1

f s].
Assumption 1: The zero dynamics (8) is input-to-
state stable i.e., for any bounded ŝ(t), the internal
states η(t) remain bounded. For r = n, there are no
zero dynamics and the system is said to be fully
linearizable.
Now the task is to find a feedback control u such
that the nonlinear uncertain dynamics (7) can be
stabilized on the basis of suitable known upper
bounds to the uncertainties appearing in (7). In
general, any sliding mode controller that keeps
s = 0 needs s, ṡ, s̈, · · · , s(r−1) to be made available.
It must be stressed that while the simple discontin-
uous relay control on s = 0 is effective when r = 1,
it is possibly unstable if r = 2 and always unstable
for r > 2 or at most produces a stable periodic
motion[12].
Definition 1: Given the constraint (6), its rth order
sliding set sr is defined by r equalities

s = ṡ = s̈ = · · · = s(r−1) = 0 (10)

which constitute an r−dimensional condition on the
system states. According to this definition, if the
only imposed condition on the sliding motion is that
of s = 0, then the sliding set S is said to be of
first order which corresponds to the case of standard
sliding mode control.
Definition 2:Assume the rth−order sliding set (10)

is nonempty and assume that it consists of Filippovs
trajectories of the discontinuous dynamical system
(5). Then the corresponding motion satisfying (10)
is termed a rth−order sliding motion with respect to
the constraint function s.
To achieve (10), there must exist constant s0,Γm,ΓM

and Φ such that system (6) satisfy

|ϕ(x, t)| ≤ Φ
|s| ≤ s0

0 < Γm ≤ |γ(x, t)| ≤ ΓM

(11)

A. Twisting Algorithm

This algorithm[14] is characterized by a twisting
of the phase portrait around the origin. The finite
time convergence to the origin is due to switching
between two different control amplitudes as the
trajectory comes nearer to the origin. The sign of
the derivative of the sliding variable is required
for decision making.Let the relative degree of the
system to be 1, the control algorithm is defined by
the following control law[15]:

u̇(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−u |u| > umax

−Vmsign(s) sṡ ≤ 0; |u| ≤ umax

−VM sign(s) sṡ > 0; |u| ≤ umax

(12)

where, Vm,VM ,umax are constant, and the corre-
sponding sufficient conditions for the finite time
convergence to the sliding manifold are[8]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 < Vm < VM
Φ
Γm
< Vm

ΓmVM − Φ > ΓMVm + Φ

(13)

B. Super Twisting Algorithm

In this algorithm the trajectories on the second
order sliding plane are also characterized by twist-
ing around the origin. But this algorithm is just
developed to control systems with relative degree 1
in order to avoid chattering. The continuous control
law u consists of two terms. The first is defined by
means of its discontinuous time derivative, while
the other is a continuous function of the available
sliding variable. The super twisting algorithm has
the advantage that it needs not the time derivative
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of the sliding manifold.
The algorithm is defined by the following control
law[15]:

u(t) = u1(t) + u2(t)

u̇1 =

⎧⎪⎪⎨⎪⎪⎩
−u |u| > umax

−Wsign(s) |u| ≤ umax

u2 =

⎧⎪⎪⎨⎪⎪⎩
−λ|s0|ρsign(s) |s| > s0

−λ|s|ρ|sign(s) |s| ≤ s0

(14)

Besides of the conditions (13), system also must
satisfy: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

W > Φ
Γm

λ2 ≥ 4ΦΓM (W+Φ)
Γ3

m(W−Φ)

0 < ρ ≤ 0.5

(15)

For ρ = 1, the algorithm converges to the origin
exponentially. For systems where s0 = ∞ and there
is no bound on the control, the algorithm can be
simplified as:

u(t) = −λ|s|ρsign(s) + u1(t)

u̇1 = −Wsign(s)
(16)

IV. DESIGN OF THE OBSERVER

The sliding mode observer is designed for esti-
mating the fault in synchronous motor. Dynamic
nonlinear system (3) with fault is the following
observer associated.

˙̂x(t) = Ax̂(t) +G(x̂, t) + Bu(t) + Lν

ŷ(t) = Cx̂(t)
(17)

The variable ν will be replaced with a sliding mode
control law like (12) or (14), L is the feedback
gain.
Let e = x̂ − x, observer function (17) subtracts
system state function (3), it can obtain:

ė = Ae +G(x̂, t) −G(x, t) + Lν − D f (18)

There exists a change of coordinates T satisfies:

[
e1

ey

]
= Te,

[
0
L2

]
= T L,

[
0

D2

]
= T D

So that (18) can be rewritten as:

ė1 = A11e1 + A12ey +G1(T−1 x̂, t) −G1(T−1x, t)

ėy = A21e1 + A22ey +G2(T−1 x̂, t) −G2(T−1x, t)

+ L2ν − D2 f
(19)

When the sliding occurs, ey = ėy = 0, so it can be
obtain the form flowing:

ė1 = A11e1 +G1(T−1 x̂, t) −G1(T−1x, t)

0 = A21e1 +G2(T−1 x̂, t) −G2(T−1x, t)

+ L2ν − D2 f

(20)

According to the Lispschitz definition of function,
it follows:

||G1(T−1 x̂, t) −G1(T−1x, t)|| ≤ LG1 ||T−1|| · ||e1||
||G2(T−1 x̂, t) −G2(T−1x, t)|| ≤ LG2 ||T−1|| · ||e1|| (21)

Where LG1 and LG2 are the constant of Lispschitz,
and because of limt �→∞e1 = 0, therefore form (20)
becomes finally:

f = D−1
2 L2ν (22)

For the PM synchronous motor, the control ob-
jective is double aspect. First, the rotor angular
position x1 = θ must track a reference trajec-
tory angular position x1re f . Second, the nonlinear
electromagnetic torque must be linearized to avoid
reluctance effects and torque ripple. This objective
is equivalent to constrain x3 = id to track a constant
direct current reference x3re f = 0. Then, assuming
all the state variables are available for measurement.
A first sliding manifold for the tracking of the
estimated value of direct current îd towards the
real value of direct current id, so the sliding mode
variable s1 is defined by

e =

[
s1

s2

]
=

[
îd − id

¨̂θ − θ̈ + k1( ˙̂θ − θ̇) + k2(θ̂ − θ)
]

(23)

Note that the relative degree of s1 equal 1. To track
the angular position θ, another sliding mode variable
can be defined as the following form for a desired
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second order dynamic. where k1 and k2 are positive
parameters such that P(z) = z̈+ k1ż+ k2z is Hurwitz
polynomial. Note also that the relative degree of s2

equals 1.
At Fig. 1, sliding mode observer is redescribed.
The control law in system adopts super twisting
algorithm, and the sliding mode variable is consists
of error between estimation and real value. Finally,
observer generates the fault estimated via a filter,
which can be designed as 1/(0.05s+ 1).

Fig. 1: Sliding Mode Observer

V. RESULT OF SIMULATION

This part displays the simulation results of high
order sliding mode observer for fault detection and
isolation. A PMSM is chosen to illustrate the perfor-
mance which is a DutyMax 95DSC060300 (Leroy
Somer Co.) drive. Two sensors give measurements
of phase currents, a optical encoder is used to
measure the position of the motor. The parameters
of synchronous motor are shown in tab. I. A phase
current of the maximum accepted value is 6.0A, the
load torque maximum value is 6N ·m, and angular
velocity is 3000rpm.
From the knowledge of the nominal parameters

TABLE I: The parameters of PMSM

Rs 3.3 Ω J 0.037 kg · m2

Ld 0.027 H fv 0.0034 N · m · s
Lq 0.0339 H P 3 −−
φ f 0.341 Wb Cl 2 N · m

and their variables, the controller parameter have

been chosen to satisfy condition (13), (15), and to
set the dynamic behavior of the system. It gives
k1 = 200, k2 = 100, and in the super twisting
algorithm, ρ = 0.5, W = 0.8, λ = 0.5.
To achieve the efficiency of controller, at Fig. 2,
it represents the detection signal f̂ compared with
the known fault signal f = 0.1 + 0.1sin(2πt). In
this figure, a good detection is obtained. Similarly,
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Fig. 2: Real Fault and Estimation

when the inject fault f like a square, Fig. 3 shows
the nicer result of detecting the real fault.
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Fig. 3: Real Fault and Estimation

The state variables of PMSM are shown in Fig. 4.
It can be seen that the trajectory of position is
tracked and the current of direct axis is near to zero.

VI. CONCLUSION

The problem of detecting the internal fault in
synchronous motor has been realized by second
order sliding mode observer. Using this method,
a good result of fault detection is obtained. More
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Fig. 4: State Variables of PMSM

precisely, second order sliding mode technique re-
duces or avoids the chattering phenomenon, despite
it is quite more complex to design than first order
sliding mode. This paper provides a straightforward
method of the MIMO system for fault detection and
isolation, the next step of this work will be the
implementation of the designed observers on the
PMSM.

References

[1] H. Yanf, M. Saif: State observation failure detection and
isolation (FDI) in bilinear systems, Inf. J. Confrol, vol. 67,
no. 6, pp. 901-920, (1997).

[2] Guang-Ren Duan, Ron J. Patton: Robust fault detection us-
ing Luenberger-type unknown input observers-a parametric
approach, Infemafional Joumal of Sysfems Science, vol.
32, no. 4, pp. 533-540, (2001).

[3] D. Koenig, S. Mammar: Design of a class of reduced order
unknown inputs nonlinear observer for fault diagnosis,
Proceedings of the American Confrol Conference, pp.2143-
2147, (2001).

[4] C. Edwards and C.P. Tan: Fault tolerant control using slid-
ing mode observers, Conference on Decision and Control,
pp. 5254-5259, (2004)

[5] A. Glumineau, M.Hamy, C.Lanier and C.H. Moog: Robust
control of a brushless servo motor via sliding mode, Inter-
national Journal of Control, Volume 58, Issue 5 , pp.979-
990, (1993)

[6] Floquet T: Contributions a la commande par modes glis-
sants d’ordre superieures, Thesis. (2000).

[7] J. Xu, T.Heng Lee, Q. Jia and M. Wang: On adaptive robust
backstepping control schemes suitable for PM synchronous
motors, International Journal of Control, Volume 70,Is-
sue 6, pp.893-920, (1998)

[8] S.V. Emelyanov, S.K. Korovin, and A. Levant: High-order
sliding modes in control systems, Computational mathe-
matics and modelling, 7(3): pp.294C318, (1996).

[9] S.V. Emelyanov, S.K. Korovin, and L.V. Levantovskiy:
New class of second order sliding algorithm, Mathematical
modelling, 2(3): pp.85C100, (1990).

[10] A. Levant. Higher order sliding:Collection of design tools,
In Proc. European Control Conference, Brussels, (1997).

[11] A. Isidori. Nonlinear Control Systems. Springer-Verlag
London, third edition, (1995).

[12] K.H. Johansson, A.E. Barabanov, and K.J.Astrom. Limit
cycle with chattering in relay feedback systems. IEEE
Trans. on Automatic Control, 47(9):1414C 1423, ‘(2002).

[13] S.V. Emelyanov, S.K. Korovin, and L.V. Levantovskiy.
Higher order sliding modes in the binary control systems.
Soviet Physics,31(4):291C293, (1986).

[14] A. Levant. Sliding order and sliding accuracy in sliding
mode control. Int. J. Control, 58(6):1247C1263, (1993).

[15] W. Perruquetti, J. Pierre. Sliding mode control in engineer-
ing . New York : Marcel Dekker, (2002).

[16] M.Arkan, D.Kostic-Perovic, P.J. Unsworth.Modelling and
simulation of induction motors with interturn faults for
diagnosis. Electric Power System Research, Vol.75:57-
66, (2005)

Pg 644

 
 

 


